Возможности витаминно-минеральных комплексов в адъювантной терапии заболеваний щитовидной железы


DOI: https://dx.doi.org/10.18565/pharmateca.2024.2.29-40

Трухан Д.И., Викторова И.А., Друк И.В.

Омский государственный медицинский университет, Омск, Россия
Заболевания щитовидной железы занимают одно из центральных мест в клинической эндокринологии. Основными компонентами для синтеза гормонов щитовидной железы являются йод и аминокислота тирозин. Исследования, проведенные в XXI в., свидетельствуют об определенном влиянии на метаболизм и функцию щитовидной железы, других микроэлементов и витаминов.
Нами проведен поиск публикаций, посвященных изучению влияния микроэлементов селена, цинка, витаминов А, Е, С на физиологию и патологию щитовидной железы. Поиск осуществлялся в информационных базах PubMed и Scopus, и в него были включены источники до 25.03.2024. Показано, что адекватное поступление селена и цинка вместе с витаминами А, Е, С способствует нормальному метаболизму щитовидной железы.
Рассмотрено изменение статуса микроэлементов селена и цинка, витаминов А, Е, С в аспекте наиболее распространенных заболеваний щитовидной железы: диффузном токсическом зобе (болезни Грейвса), первичном гипотиреозе, аутоиммунном тиреоидите, раке щитовидной железы.
Для нормализации функции щитовидной железы используются добавки микроэлементов селена и цинка – как по отдельности, так и совместно, а также с добавлением витаминов А, Е, С, обладающих антиоксидантной активностью. Их добавление в качестве средства для адъювантной терапии повышает эффективность базисной терапии тиреостатиками при гипертиреозе и левотироксином при гипотиреозе.
Предварительный анализ исходного уровня микроэлементов и витаминов представляется целесообразным для лучшего отбора пациентов, нуждающихся в заместительной терапии с использованием витаминно-минеральных комплексов.

Литература


1. Трухан Д.И., Викторова И.А. Нефрология. Эндокринология. Гематология: учеб. пособие. СПб.: СпецЛит, 2023. 352 с.


2. Трухан Д.И., Филимонов С.Н., Багишева Н.В. Клиника, диагностика и лечение основных гематологических и эндокринных заболеваний. Новокузнецк: ООО «Полиграфист». 2021. 174 с.


3. Трухан Д.И., Викторова И.А. Нефрология. Эндокринология. Гематология: учеб. пособие. СПб.: СпецЛит, 2017. 253 с. Trukhan D.I., Viktorova I.A. Nephrology. Endocrinology. Hematology: textbook. St.-Peterburg: SpeczLit, 2017. 253 p. (In Russ.)].


4. Barchielli G., Capperucci A., Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel). 2022;11(2):251. Doi: 10.3390/antiox11020251.


5. Balazs C., Racz K. The role of selenium in endocrine system diseases. Orv Hetil. 2013 Oct 13;154(41):1628 –35. Doi: 10.1556/OH.2013.29723.


6. Gorini F., Sabatino L., Pingitore A., Vassalle C. Selenium: An Element of Life Essential for Thyroid Function. Molecules. 2021;26(23):7084. Doi: 10.3390/molecules26237084.


7. Beckett G.J., Arthur J.R. Selenium and endocrine systems. J Endocrinol. 2005;184(3):455–65. Doi: 10.1677/joe.1.05971.


8. Kohrle J. Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int J Mol Sci. 2023 Feb 8;24(4):3393. Doi: 10.3390/ijms24043393.


9. Kohrle J., Jakob F., Contempre B., Dumont J.E. Selenium, the thyroid, and the endocrine system. Endocr Rev. 2005;26(7):944–84. Doi: 10.1210/er.2001-0034.


10. Drutel A., Archambeaud F., Caron P. Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol (Oxf). 2013;78(2):155–64. Doi: 10.1111/cen.12066.


11. Zhou Q., Xue S., Zhang L., Chen G. Trace elements and the thyroid. Front Endocrinol (Lausanne). 2022 Oct 24;13:904889. Doi: 10.3389/fendo.2022.904889.


12. Gupta S., Jaworska-Bieniek K., Lubinski J., Jakubowska A. Can selenium be a modifier of cancer risk in CHEK2 mutation carriers? Mutagenesis. 2013;28(6):625–29. Doi: 10.1093/mutage/get050.


13. Duntas L.H., Benvenga S. Selenium: an element for life. Endocrine. 2015;48(3):756 –75. Doi: 10.1007/s12020-014-0477-6.


14. Triggiani V., Tafaro E., Giagulli V.A., et al. Role of iodine, selenium and other micronutrients in thyroid function and disorders.Endocr Metab Immune Disord Drug Targets. 2009;9(3):277–94. Doi: 10.2174/187153009789044392.


15. Guastamacchia E., Giagulli V.A., Licchelli B., Triggiani V. Selenium and Iodine in Autoimmune Thyroiditis.Endocr Metab Immune Disord Drug Targets. 2015;15(4):288–92. Doi: 10.2174/1871530315666150619094242.


16. Lacka K., Szeliga A. Significance of selenium in thyroid physiology and pathology.Pol Merkur Lekarski. 2015;38(228):348–53.


17. Brauer V.F., Schweizer U., Kohrle J., Paschke R.Selenium and goiter prevalence in borderline iodine sufficiency. Eur J Endocrinol. 2006;155(6):807–12. Doi: 10.1530/eje.1.02302.


18. Bulow Pedersen I., Knudsen N., Carle A., et al. Serum selenium is low in newly diagnosed graves’ disease: a population-based study. Clin Endocrinol (Oxf). 2013;79(4):584–90. Doi: 10.1111/cen.12185.


19. Kohrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes. 2013;20(5):441–48. Doi: 10.1097/01.med.0000433066.24541.88.


20. Kohrle J. Selenium and the thyroid. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):392–401. Doi: 10.1097/MED.0000000000000190.


21. Liu Y., Huang H., Zeng J., Sun C. Thyroid volume, goiter prevalence, and selenium levels in an iodine-sufficient area: A cross-sectional study. BMC Public Health. 2013;13:1153. Doi: 10.1186/1471-2458-13-1153.


22. Zimmermann M.B., Kohrle J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: biochemistry and relevance to public health. Thyroid. 2002;12(10):867–78. Doi: 10.1089/105072502761016494.


23. Jain R.B. Thyroid function and serum copper, selenium, and zinc in general U.S. population. Biol Trace Elem Res. 2014;159(1–3):87–98. Doi: 10.1007/s12011-014-9992-9.


24. Derumeaux H., Valeix P., Castetbon K., et al. Association of selenium with thyroid volume and echostructure in 35- to 60-year-old French adults. Eur J Endocrinol. 2003;148(3):309–15. Doi: 10.1530/eje.0.1480309.


25. Brzozowska M., Kretowski A., Podkowicz K., et al. Evaluation of influence of selenium, copper, zinc and iron concentrations on thyroid gland size in school children with normal ioduria. Pol Merkur Lekarski. 2006;20(120):672–77.


26. Wu Q., Rayman M.P., Lv H., et al. Low Population Selenium Status Is Associated With Increased Prevalence of Thyroid Disease. J Clin Endocrinol Metab. 2015;100(11):4037–47. Doi: 10.1210/jc.2015-2222.


27. Winther K.H., Rayman M.P., Bonnema S.J, Hegedus L. Selenium in thyroid disorders – essential knowledge for clinicians. Nat Rev Endocrinol. 2020;16(3):165–76. Doi: 10.1038/s41574-019-0311-6.


28. Ruggeri R.M., Campenn М A., Giuffrida G., et al. Oxidative stress as a key feature of autoimmune thyroiditis: An update. Minerva Endocrinol. 2020;45(4):326–44. Doi: 10.23736/S0391-1977.20.03268-X.


29. Huang Z., Rose A.H., Hoffmann P.R. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;16:705–43. Doi: 10.1089/ars.2011.4145.


30. Carlson B.A., Yoo M.H., Shrimali R.K., et al. Role of selenium-containing proteins in T-cell and macrophage function. The Proceedings of the Nutrition Society. 2010;69(3):300–10. Doi: 10.1017/S002966511000176X.


31. Wichman J., Winther K.H., Bonnema S.J., Hegedus L. Selenium Supplementation Significantly Reduces Thyroid Autoantibody Levels in Patients with Chronic Autoimmune Thyroiditis: A Systematic Review and Meta-Analysis. Thyroid. 2016;26(12):1681–92. Doi: 10.1089/thy.2016.0256.


32. Wang Y.S., Liang S.S., Ren J.J., et al. The Effects of Selenium Supplementation in the Treatment of Autoimmune Thyroiditis: An Overview of Systematic Reviews. Nutrients. 2023;15(14):3194. Doi: 10.3390/nu15143194.


33. Stoedter M., Renko K., Hog A., Schomburg L. Selenium controls the sex-specific immune response and selenoprotein expression during the acute-phase response in mice. Biochem J. 2010;429(1):43–51. Doi: 10.1042/BJ20091868.


34. Broome C.S., McArdle F., Kyle J.A., et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr. 2004;80(1):154–62. Doi: 10.1093/ajcn/80.1.154.


35. Mahmoodianfard S., Vafa M., Golgiri F., et al. Effects of Zinc and Selenium Supplementation on Thyroid Function in Overweight and Obese Hypothyroid Female Patients: A Randomized Double-Blind Controlled Trial. J Am Coll Nutr. 2015;34(5):391–99. Doi: 10.1080/07315724.2014.926161.


36. Zavros A., Andreou E., Aphamis G., et al. The Effects of Zinc and Selenium Co-Supplementation on Resting Metabolic Rate, Thyroid Function, Physical Fitness, and Functional Capacity in Overweight and Obese People under a Hypocaloric Diet: A Randomized, Double-Blind, and Placebo-Controlled Trial. Nutrients. 2023;15(14):3133. Doi: 10.3390/nu15143133.


37. Severo J.S., Morais J.B.S., de Freitas T.E.C., et al. The Role of Zinc in Thyroid Hormones Metabolism. Int J Vitam Nutr Res. 2019;89(1-2):80–8. Doi: 10.1024/0300-9831/a000262.


38. Shankar A.H., Prasad A.S. Zinc and immune function: the biological basis of altered resistance to infection Am J Clin Nutr. 1998;68(2 Suppl):447S–63S. Doi: 10.1093/ajcn/68.2.447S.


39. Overbeck S., Rink L., Haase H. Modulating the immune response by oral zinc supplementation: a single approach for multiple diseases. Arch Immunol Ther Exp (Warsz). 2008;56(1):15–30. Doi: 10.1007/s00005-008-0003-8.


40. Kirkil G., Hamdi Muz M., Seckin D., et al. Antioxidant effect of zinc picolinate in patients with chronic obstructive pulmonary disease. Respir Med. 2008;102(6):840–44. Doi: 10.1016/j.rmed.2008.01.010.


41. Samad N., Sodunke T.E., Abubakar A.R., et al. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res. 2021;14:527–50. Doi: 10.2147/JIR.S295377.


42. Li J., Cao D., Huang Y., et al. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr. 2022;9:798078. Doi: 10.3389/fnut.2022.798078.


43. Paulazo M.A., Klecha A.J., Sterle H.A., et al. Hypothyroidism-related zinc deficiency leads to suppression of T lymphocyte activity. Endocrine. 2019;66(2):266–77. Doi: 10.1007/s12020-019-01936-7.


44. El-Fadeli S., Bouhouch S., Skalny A.V., et al. Effects of imbalance in trace element on thyroid gland from Moroccan children. Biol Trace Elem Res. 2016;170(2):288–93. Doi: 10.1007/s12011-015-0485-2.


45. Al-Bazi M.M., Kumosani T.A., Al-Malki A.L., et al. Association of trace elements abnormalities with thyroid dysfunction. Afr Health Sci. 2021;21(3):1451–59. Doi: 10.4314/ahs.v21i3.56.


46. Pathak R, Pathak A. Effectiveness of zinc supplementation on lithium-induced alterations in thyroid functions. Biol Trace Elem Res. 2021;199(6):2266–71. Doi: 10.1007/s12011-020-02356-9


47. Capriello S., Stramazzo I., Bagaglini M.F., et al. The relationship between thyroid disorders and vitamin A.: A narrative minireview. Front Endocrinol (Lausanne). 2022;13:968215. Doi: 10.3389/fendo.2022.968215.


48. Biebinger R., Arnold M., Koss M., et al. Effect of concurrent vitamin A and iodine deficiencies on the thyroid-pituitary axis in rats. Thyroid 2006;16:961–65. Doi: 10.1089/thy.2006.16.961.


49. Hess S.Y. The impact of common micronutrient deficiencies on iodine and thyroid metabolism: the evidence from human studies. Best Pract Res Clin Endocrinol Metab. 2010;24(1):117–32. Doi: 10.1016/j.beem.2009.08.012.


50. O’Kane S.M., Mulhern M.S., Pourshahidi L.K.,et al. Micronutrients, iodine status and concentrations of thyroid hormones: a systematic review. Nutr Rev. 2018;76(6):418–31. Doi: 10.1093/nutrit/nuy008.


51. Carazo A., Macakova K.., Matousva K., et al. Vitamin a update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients. 2021;13(5):1703. Doi: 10.3390/nu13051703.


52. Zimmermann M.B. Interactions of vitamin a and iodine deficiencies: Effects on the pituitary-thyroid axis. Int J Vitam Nutr Res 2007;77(3):236–40. Doi: 10.1024/0300-9831.77.3.236.


53. Brossaud J., Pallet V., Corcuff J.B. Vitamin a, endocrine tissues and hormones: interplay and interactions. Endocr Connect 2017;6(7):R121–30. Doi: 10.1530/EC-17-0101.


54. Grignard E., Hеkansson H., Munn S. Regulatory needs and activities to address the retinoid system in the context of endocrine disruption: The European viewpoint. Reprod Toxicol 2020:93:250–58. Doi: 10.1016/j.reprotox.2020.03.002.


55. Wolf G. The regulation of the thyroid-stimulating hormone of the anterior pituitary gland by thyroid hormone and by 9-cys-retinoic acid. Nutr Rev.2002;60:374–77. Doi: 10.1301/00296640260385919.


56. Li Y., Wongsiriroj N., Blaner W.S. The multifaceted nature of retinoid transport and metabolism. Hepatobiliary Surg Nutr. 2014;3(3):126–39. Doi: 10.3978/j.issn.2304-3881.2014.05.04.


57. Diyya A.S.M., Thomas N.V. Multiple Micronutrient Supplementation: As a Supportive Therapy in the Treatment of COVID-19. Biomed Res Int. 2022;2022:3323825. Doi: 10.1155/2022/3323825.


58. Farasati Far B., Broomand Lomer N., Gharedaghi H.,et al. Is beta-carotene consumption associated with thyroid hormone levels? Front Endocrinol (Lausanne). 2023;14:1089315. Doi: 10.3389/fendo.2023.1089315.


59. Трухан Д.И., Викторова И.А., Иванова Д.С. Актуальные аспекты клиники, диагностики и лечения заболеваний желчного пузыря и желчевыводящих путей. Санкт-Петербург: СпецЛит, 2023. 128 с.


60. Рожкова М.Ю., Трухан Д.И., Иванова Д.С., Голошубина В.В. Актуальные аспекты экстрагенитальной патологии: в фокусе – недостаточность секреторной функции щитовидной железы и дисфункциональные расстройства билиарного тракта. Клинический разбор в общей медицине. 2023;4(3):6–11.


61. Priyadarshani A.M.B. Insights of hypercarotenaemia: A brief review. Clin Nutr ESPEN. 2018;23:19–24. Doi: 10.1016/j.clnesp.2017.12.002.


62. Iddir M., Brito A., Dingeo G., et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020;12(6):1562. Doi: 10.3390/nu12061562.


63. Napolitano G, Fasciolo G, Di Meo S, Venditti P. Vitamin E Supplementation and Mitochondria in Experimental and Functional Hyperthyroidism: A Mini-Review. Nutrients. 2019;11(12):2900. doi: 10.3390/nu11122900.


64. Yu J., Shan Z., Chong W., et al. Vitamin E ameliorates iodine-induced cytotoxicity in thyroid. J Endocrinol. 2011 Jun;209(3):299–306. Doi: 10.1530/JOE-11-0030.


65. Hedayati M., Niazmand S., Hosseini M., et al. Vitamin E improved redox homeostasis in heart and aorta of hypothyroid rats. Endocr Regul. 2017;51(4):205–12. Doi: 10.1515/enr-2017-0021.


66. Hedayati-Moghadam M., Baghcheghi Y., Beheshti F., et al. Vitamin E Prevented Hepatic and Renal Tissue Damage in Hypothyroid Rats. Adv Biomed Res. 2023;12:75. Doi: 10.4103/abr.abr_275_21.


67. Figueroa-Mundez R., Rivas-Arancibia S. Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Front Physiol. 2015;6:397. Doi: 10.3389/fphys.2015.00397.


68. Woollard K.J., Loryman C.J., Meredith E., et al. Effects of oral vitamin C on monocyte: endothelial cell adhesion in healthy subjects. Biochem Biophys Res Commun. 2002;294:1161–68. Doi: 10.1016/S0006-291X(02)00603-4.


69. Owen P.J., Rajiv C., Vinereanu D., et al. Subclinical hypothyroidism, arterial stiffness, and myocardial reserve. J Clin Endocrinol Metab. 2006,91: 2126–32. Doi: 10.1210/jc.2005-2108.


70. Fernandez-Real J.M., Lopez-Bermejo A., Castro A., et al. Thyroid function is intrinsically linked to insulin sensitivity and endothelium-dependent vasodilation in healthy euthyroid subjects. J Clin Endocrinol Metab. 2006;91:3337–43. Doi: 10.1210/jc.2006-0841.


71. Ebrahimzadeh-Attari V., Panahi G., Hebert J.R.,et al. Nutritional approach for increasing public health during pandemic of COVID-19: A comprehensive review of antiviral nutrients and nutraceuticals. Health Promot Perspect. 2021;11(2):119–36. Doi: 10.34172/hpp.2021.17.


72. Трухан Д.И., Филимонов С.Н. Клиника, диагностика и лечение основных эндокринных и гематологических заболеваний. Новокузнецк: ООО «Полиграфист». 2015. 119 с.


73. Wertenbruch T., Willenberg H.S., Sagert C., et al. Serum selenium levels in patients with remission and relapse of graves’ disease. Med Chem. 2007;3(3):281–84. Doi: 10.2174/157340607780620662.


74. Wang Y., Zhao F., Rijntjes E., et al. Role of selenium intake for risk and development of hyperthyroidism. J Clin Endocrinol Metab. 2019;104(2):568–80. Doi: 10.1210/jc.2018-01713


75. Wang L., Wang B., Chen S.R., et al. Effect of selenium supplementation on recurrent hyperthyroidism caused by graves’ disease: A prospective pilot study. Horm Metab Res. 2016;48(9):559–64. Doi: 10.1055/s-0042-110491.


76. Ademoglu E., Gokkusu C., Yarman S., Azizlerli H. The effect of methimazole on the oxidant and antioxidant system in patients with hyperthyroidism. Pharmacol Res. 1998;38:93–6. Doi: 10.1006/phrs.1998.0336.


77. Ozdem S., Aliciguzel Y., Ozdem S.S., Karayalcin U.Effects of propylthiouracil treatment on antioxidant activities in blood of toxic multinodular goiter patients. Pharmacology. 2000;61(1):31–6. Doi: 10.1159/000028377.


78. Aliciguzel Y., Ozdem S.N., Ozdem S.S., et al. Erythrocyte, plasma, and serum antioxidant activities in untreated toxic multinodular goiter patients. Free Radic Biol Med. 2001;30(6): 665–70. Doi: 10.1016/s0891-5849(00)00509-8.


79. Mohan Kumar K.M., Bobby Z., Selvaraj N., et al. Possible link between glycated hemoglobin and lipid peroxidation in hyperthyroidism. Clin Chim Acta. 2004;342:187–92. Doi: 10.1016/j.cccn.2003.12.027.


80. Londzin-Olesik M., Kos-Kudła B., Nowak A., et al. The effect of thyroid hormone status on selected antioxidant parameters in patients with Graves’ disease and active thyroid-associated orbitopathy. Endokrynol Pol. 2020;71(5):418–24. Doi: 10.5603/EP.a2020.0049.


81. Vrca V.B., Skreb F., Cepelak I., et al. Supplementation with antioxidants in the treatment of Graves’ disease; the effect on glutathione peroxidase activity and concentration of selenium. Clinica Chimica Acta. 2004;341(1-2):55–63. Doi: 10.1016/j.cccn.2003.10.028.


82. Трухан Д.И., Лебедев О.И. Изменения органа зрения при заболеваниях внутренних органов. Справочник поликлинического врача. 2012;9:50–57.


83. Трухан Д.И., Лебедев О.И. Изменение органа зрения при соматических заболеваниях. Терапевтический архив. 2015;8:132–36.


84. Khong J.J., Goldstein R.F., Sanders K.M., et al. Serum selenium status in graves’ disease with and without orbitopathy: A case-control study. Clin Endocrinol (Oxf). 2014;80(6):905–10. Doi: 10.1111/cen.12392.


85. Marcocci C., Kahaly G.J., Krassas G.E., B et al. European Group on Graves’ Orbitopathy. Selenium and the course of mild Graves’ orbitopathy. N Engl J Med. 2011;364:1920–31. Doi: 10.1056/NEJMoa1012985.


86. Ventura M., Melo M., Carrilho F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int J Endocrinol. 2017;2017:1297658. Doi: 10.1155/2017/1297658.


87. Foos W., Maliakkal Hernandez J., Mansour T.N. Selenium supplementation in thyroid eye disease: an updated review from a clinical ophthalmic perspective. Orbit. 2023 Nov 17:1–11. Doi: 10.1080/01676830.2023.2276783.


88. Leo M., Bartalena L., Rotondo Dottore G., et al. Effects of selenium on short-term control of hyperthyroidism due to graves’ disease treated with methimazole: Results of a randomized clinical trial. J Endocrinol Invest. 2017;40(3):281–87. Doi: 10.1007/s40618-016-0559-9.


89. Genere N., Stan M.N. Current and emerging treatment strategies for graves’ orbitopathy. Drugs. 2019;79(2):109–24. Doi: 10.1007/s40265-018-1045-9.


90. Almanza-Monterrubio M., Garnica-Hayashi L.,Davila-Camargo A., Nava-Castaneda A. Oral selenium improved the disease activity in patients with mild graves’ orbitopathy. J francais d’ophtalmologie. 2021;44(5):643–51. Doi: 10.1016/j.jfo.2020.08.02.9.


91. Bartalena L., Kahaly G.J., Baldeschi L., et al. The 2021 European group on graves’ orbitopathy (Eugogo) clinical practice guidelines for the medical management of graves’ orbitopathy. Eur J Endocrinol. 2021;185(4):G43–g67. Doi: 10.1530/eje-21-0479.


92. Betsy A., Binitha M., Sarita S. Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichol 2013;5(1):40–2. Doi: 10.4103/0974-7753.114714.


93. Ertek S., Cicero A.F., Caglar O., Erdogan G. Relationship between serum zinc levels, thyroid hormones and thyroid volume following successful iodine supplementation. Hormones (Athens). 2010;9(3):263–68. Doi: 10.14310/horm.2002.1276.


94. Valea A., Georgescu C.E. Selenoproteins in human body: focus on thyroid pathophysiology. Hormones (Athens). 2018;17(2):183–96. Doi: 10.1007/s42000-018-0033-5.


95. Goswami U.C., Choudhury S. The status of retinoids in women suffering from hyper- and hypothyroidism: interrelationship between vitamin A, beta-carotene and thyroid hormones. Int J Vitam Nutr Res. 1999;69(2):132–35. Doi: 10.1024/0300-9831.69.2.132.


96. Aktuna D., Buchinger W., Langsteger W., et al. Beta-carotene, vitamin A and carrier proteins in thyroid diseases Acta Med Austriaca. 1993;20(1–2):17–20.


97. Marrocco W., Adoncecchi L., Suraci C., et al. Behavior of vitamin A, beta-carotene, retinol binding protein and prealbumin in the plasma of hypo- and hyperthyroid subjects. Boll Soc Ital Biol Sper. 1984;60(4):769–75.


98. Jubiz W., Ramirez M. Effect of vitamin C on the absorption of levothyroxine in patients with hypothyroidism and gastritis. J Clin Endocrinol Metab. 2014;99(6):E1031–34. Doi: 10.1210/jc.2013-4360.


99. Centanni M., Gargano L., Canettieri G., et al. Thyroxine in goiter, helicobacter pylori infection, and chronic gastritis. N Engl J Med. 2006;354(17):1787–95. Doi: 10.1056/NEJMoa043903.


100. Esmaeilizadeh M., Hosseini M., Beheshti F., et al. Vitamin C improves liver and renal functions in hypothyroid rats by reducing tissue oxidative injury. Int J Vitam Nutr Res. 2020;90(1-2):84–94. Doi: 10.1024/0300-9831/a000495.


101. Pan T., Zhong M., Zhong X., et al. Levothyroxine replacement therapy with vitamin E supplementation prevents oxidative stress and cognitive deficit in experimental hypothyroidism. Endocrine. 2013;43:434–39. Doi: 10.1007/s12020-012-9801-1.


102. Guo Y., Wan, S.Y., Zhong X., et al. Levothyroxine replacement therapy with vitamin E supplementation prevents the oxidative stress and apoptosis in hippocampus of hypothyroid rats. Neuroendocrinol Lett. 2014;35:684–90.


103. Kumar N., Das A., Kumari N., et al. Intermittent Fasting and Vitamin E Supplementation Attenuates Hypothyroidism-Associated Ophthalmopathy. Mol Nutr Food Res. 2024 Feb 11:e2300589. Doi: 10.1002/mnfr.202300589.


104. Wang W., Xue H., Li Y., et al. Effects of selenium supplementation on spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. Thyroid. 2015;25(10):1137–44. Doi: 10.1089/thy.2014.0568.


105. McLachlan S.M., Aliesky H., Banuelos B., et al. Variable effects of dietary selenium in mice that spontaneously develop a spectrum of thyroid autoantibodies. Endocrinology.2017;158(11):3754–64. Doi: 10.1210/en.2017-00275.


106. Fiorino S., Gallo C., Zippi M., et.al. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res. 2020;32(10):2115–31. Doi: 10.1007/s40520-020-01669-y.


107. Glattre E., Nygard J.F., Aaseth J. Selenium and cancer prevention: observations and complexity. J Trace Elem Med Biol. 2012;26(2-3):168–69. Doi: 10.1016/j.jtemb.2012.04.021.


108. Combs G.F. Jr. Current evidence and research needs to support a health claim for selenium and cancer prevention. J Nutr. 2005;135(2):343–47. Doi: 10.1093/jn/135.2.343.


109. Rua R.M., Nogales F., Carreras O., Ojeda M.L. Selenium, selenoproteins and cancer of the thyroid.J Trace Elem Med Biol. 2023;76:127115. Doi: 10.1016/j.jtemb.2022.127115.


110. Xiang N., Zhao R., Zhong W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother Pharmacol. 2009; 63(2):351–62. Doi: 10.1007/s00280-008-0745-3.


111. de Oliveira Maia M., Batista B.A.M., Sousa M.P., et al. Selenium and thyroid cancer: a systematic review. Nutr Cancer. 2020;72(8):1255–63. Doi: 10.1080/01635581.2019.1679194.


112. Rayman M.P. Selenium and human health. Lancet. 2012;379(9822):1256–68. Doi: 10.1016/S0140-6736(11)61452-9.


113. Gumulec J., Masarik M., Adam V., et al. Serum and tissue zinc in epithelial malignancies: A meta-analysis. PloS One. 2014;9(6):e99790. Doi: 10.1371/journal.pone.0099790.


114. Baltaci A.K., Dundar T.K., Aksoy F., Mogulkoc R. Changes in the serum levels of trace elements before and after the operation in thyroid cancer patients. Biol Trace Elem Res. 2017;175(1):57–64. Doi: 10.1007/s12011-016-0768-2.


115. Al-Sayer H., Mathew T.C., Asfar S., et al. Serum changes in trace elements during thyroid cancers. Mol Cell Biochem. 2004;260(1-2):1–5. Doi: 10.1023/B:MCBI.0000026027.20680.c7.


116. Emami A., Nazem M.R., Shekarriz R., Hedayati M. Micronutrient status (calcium, zinc, vitamins d and e) in patients with medullary thyroid carcinoma: A cross-sectional study. Nutrition. 2017;41:86–9. Doi: 10.1016/j.nut.2017.04.004.


117. Bottger F., Valles-Marti A., Cahn L., Jimenez C.R. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. J Exp Clin Cancer Res. 2021;40(1):343. Doi: 10.1186/s13046-021-02134-y.


118. Su X., Shen Z., Yang Q., et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics. 2019; 9(15): 4461–73. Doi: 10.7150/thno.35219.


119. Jingtai Z., Linfei H., Yuyang Q., et al. Targeting Aurora-a inhibits tumor progression and sensitizes thyroid carcinoma to Sorafenib by decreasing PFKFB3-mediated glycolysis. Cell Death Dis. 2023;14(3):224. Doi: 10.1038/s41419-023-05709-z.


120. Трухан Д.И., Викторова И.А., Иванова Д.С., Голошубина В.В. Острые респираторные вирусные инфекции: возможности витаминно-минеральных комплексов в лечении, профилактике и реабилитации. Фарматека. 2023;30(1-2):136–45.


Об авторах / Для корреспонденции


Автор для связи: Дмитрий Иванович Трухан, д.м.н., доцент, профессор кафедры поликлинической терапии и внутренних болезней, Омский государственный медицинский университет, Омск, Россия; dmitry_trukhan@mail.ru 


ORCID:
Д.И. Трухан (Dmitry I. Trukhan), https://orcid.org/0000-0002-1597-1876 
И.А. Викторова (Inna A. Viktorova), https://orcid.org/0000-0001-8728-2722 
И.В. Друк (Inna V. Druk), https://orcid.org/0000-0001-8317-7765 


Похожие статьи


Бионика Медиа